Robust Evaluation of Differential Geometry Properties using Interval Arithmetic Techniques by Chih - kuo
نویسندگان
چکیده
This thesis presents a robust method for evaluating differential geometry properties of sculptured surfaces by using a validated ordinary differential equation (ODE) system solver based on interval arithmetic. Iso-contouring of curvature of a Bezier surface patch, computation of curvature lines of a Bezier surface patch and computation of geodesics of a Bezier surface patch are computed by the Validated Numerical Ordinary Differential Equations (VNODE) solver which employs rounded interval arithmetic methods. Then, the results generated from the VNODE program are compared with the results from Praxiteles code which uses non-validated ODE solvers operating in double precision floating point arithmetic for the solution of the same problems. From the results of these experiments, we find that the VNODE program performs these computations reliably, but at increased computational cost. Thesis Supervisor: Nicholas M. Patrikalakis, Kawasaki Professor of Engineering Professor of Mechanical and Ocean Engineering
منابع مشابه
Stock Evaluation under Mixed Uncertainties Using Robust DEA Model
Data Envelopment Analysis (DEA) is one of the popular and applicable techniques for assessing and ranking the stocks or other financial assets. It should be noted that in the financial markets, most of the times, the inputs and outputs of DEA models are accompanied by uncertainty. Accordingly, in this paper, a novel Robust Data Envelopment Analysis (RDEA) model, which is capable to be used in t...
متن کاملInterval Arithmetic: an Efficient Implementation and an Application to Computational Geometry
We discuss interval techniques for speeding up the exact evaluation of geometric predicates and describe a C++ implementation of interval arithmetic that is strongly innuenced by the rounding modes of the widely used IEEE 754 standard. Using this approach we engineer an eecient oating point lter for the computation of geometric predicates. We validate our approach experimentally, comparing it w...
متن کاملINTUITIONISTIC FUZZY DIMENSIONAL ANALYSIS FOR MULTI-CRITERIA DECISION MAKING
Dimensional analysis, for multi-criteria decision making, is a mathematical method that includes diverse heterogeneous criteria into a single dimensionless index. Dimensional Analysis, in its current definition, presents the drawback to manipulate fuzzy information commonly presented in a multi-criteria decision making problem. To overcome such limitation, we propose two dimensional analysis ba...
متن کاملArithmetic Aggregation Operators for Interval-valued Intuitionistic Linguistic Variables and Application to Multi-attribute Group Decision Making
The intuitionistic linguistic set (ILS) is an extension of linguisitc variable. To overcome the drawback of using single real number to represent membership degree and non-membership degree for ILS, the concept of interval-valued intuitionistic linguistic set (IVILS) is introduced through representing the membership degree and non-membership degree with intervals for ILS in this paper. The oper...
متن کاملUnivalent holomorphic functions with fixed finitely many coefficients involving Salagean operator
By using generalized Salagean differential operator a newclass of univalent holomorphic functions with fixed finitely manycoefficients is defined. Coefficient estimates, extreme points,arithmetic mean, and weighted mean properties are investigated.
متن کامل